MATH 54 - HINTS TO HOMEWORK 8

PEYAM TABRIZIAN

Here are a couple of hints to Homework 8! Enjoy :)

Note: For all those problems, to find the eigenvalues of A, calculate $\operatorname{det}(\lambda I-A)$ (or $\operatorname{det}(A-\lambda I)$ if you want), and find the zeros of the resulting polynomial. To find the eigenvectors of A, for each eigenvalue λ that you found, find a basis for $N u l(\lambda I-A)$ (or $\operatorname{Nul}(A-\lambda I))$. Also, you should never get $\operatorname{Nul}(A-\lambda I)=\{\mathbf{0}\}$

Section 5.1: EIgenvalues and eigenvectors

5.1.3, 5.1.5. Calculate $A \mathbf{v}$, where A is the given matrix and \mathbf{v} is the given vector.
5.1.9, 5.1.11, 5.1.16. All you have to do is find a basis for $N u l(\lambda I-A)$ for each eigenvalue λ you found! Remember, you should never get $N u l(\lambda I-A)=\{\mathbf{0}\}$. In that case, you probably made an algebra mistake!
5.1.17. Remember that the determinant of an upper-triangular matrix is just the product on the entries of the diagonal!
5.1.21.
(a) \mathbf{F} (\mathbf{x} has to be nonzero)
(b) \mathbf{T} (IMT)
(c) \mathbf{T}
(d) \mathbf{T} (depending on what you mean by easy and hard :))
(e) \mathbf{F} (that has nothing to do with eigenvalues, to find the eigenvalues, just find $\operatorname{det}(\lambda I-$ A))
5.1.22.
(a) \mathbf{F} (\mathbf{x} has to be nonzero)
(b) \mathbf{F} (Consider $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Here $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right] . \mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are linearly independent eigenvectors, but they correspond to the same eigenvalue $\lambda=1$. The correct statement is that if $\lambda 1 \neq \lambda 2$ and $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are eigenvectors corresponding to λ_{1} and λ_{2}, then $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are linearly independent)
(c) ?????? (what is a steady-state vector for a stochastic matrix???? Just write \mathbf{T}, and don't worry about it)

[^0](d) \mathbf{F} (Consider $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Then one eigenvalue is $\lambda=0$ because A is not invertible, but 0 is not on the diagonal of A. Or pick any other example, like the matrix in 5.1.11)
(e) $\mathbf{T}(N u l(\lambda I-A))$
5.1.24. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]($ eigenvalue $\lambda=1)$
5.1.25. This is cute! Suppose $A \mathbf{v}=\lambda \mathbf{v}$, then multiply by A^{-1} to get $A^{-1} A \mathbf{v}=A^{-1} \lambda \mathbf{v}$, then $\mathbf{v}=A^{-1}(\lambda \mathbf{v})=\lambda A^{-1} \mathbf{v}$, and divide by $\lambda \neq 0$ (since A is invertible) to get $\frac{1}{\lambda} \mathbf{v}=A^{-1} \mathbf{v}$, that is $A^{-1} \mathbf{v}=\frac{1}{\lambda} \mathbf{v}$
5.1.26. This is also cute! Suppose λ is an eigenvalue for A, then $A \mathbf{v}=\lambda \mathbf{v}$ for some \mathbf{v}. Apply A to this equation to get $A A \mathbf{v}=A(\lambda \mathbf{v})=\lambda A \mathbf{v}=\lambda(\lambda \mathbf{v})=\lambda^{2} \mathbf{v}$. But $A A=A^{2}=O$, so $O \mathbf{v}=\lambda^{2} \mathbf{v}$, so $\lambda^{2} \mathbf{v}=\mathbf{0}$. But the only way this happens is if $\lambda^{2}=0$, so $\lambda=0$

SECtion 5.2: The Characteristic equation

5.2.1, 5.2.3, 5.2.9, 5.2.11, 5.2.13. Calculate $\operatorname{det}(\lambda I-A)$ (or $\operatorname{det}(A-\lambda I)$ if you want) and find the zeros of the resulting polynomial. To do this, it's wise to expand the determinant along a row with lots of 0 s .
5.2.19. Just set $\lambda=0$. Then $\operatorname{det}(A-\lambda I)$ becomes $\operatorname{det}(A)$.

5.2.21.

(a) \mathbf{F}
(b) \mathbf{F} (for example, multiplying a row by 2 doubles the determinant)
(c) \mathbf{T}
(d) $\mathbf{F}(-5$ is an eigenvalue)
5.2.24. If A and B are similar, then there exists a matrix P with $A=P B P^{-1}$. Then calculate $\operatorname{det}(A)$.

SECTION 5.3: Diagonalization
5.3.1. If $A=P D P^{-1}$, then $A^{k}=P D^{k} P^{-1}$
5.3.7, 5.3.11, 5.3.17. This means: Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$. Here D is the diagonal matrix whose entries are the eigenvalues of A and P is the matrix whose columns are the corresponding eigenvectors. Remember that the eigenvalues are given to you on the previous page!!! Also, for 5.3 .17 , since it's a lower-triangular matrix, the eigenvalues are $\lambda=4,5$. To find the eigenvectors, find a basis for $\operatorname{Nul}(\lambda I-A)$, where λ is the given eigenvalue.

5.3.21.

(a) \mathbf{T} (by definition)
(b) \mathbf{T}
(c) \mathbf{F} (The 'only if' part is true, but the 'if'-part is false! For example $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has eigenvalue $\lambda=1$ (so 2 eigenvalues counting multiplicities), but is not diagonalizable)
(d) \mathbf{F} (Consider $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. It is diagonalizable (in fact a diagonal matrix), but not invertible)
5.3.22.
(a) \mathbf{F} (n linearly independent eigenvectors)
(b) $\mathbf{F}\left(A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right.$ is diagonalizable (in fact diagonal), but it has only 1 eigenvalue $\lambda=1)$
(c) \mathbf{T} (Suppose for simplicity that $P=\left[\begin{array}{ll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]$ and $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$. Then $A P=$ $A\left[\begin{array}{ll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]=\left[\begin{array}{ll}A \mathbf{v}_{\mathbf{1}} & A \mathbf{v}_{\mathbf{2}}\end{array}\right]$ and $P D=\left[\begin{array}{ll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]=\left[\begin{array}{ll}\lambda_{1} \mathbf{v}_{\mathbf{1}} & \lambda_{2} \mathbf{v}_{\mathbf{2}}\end{array}\right]$. However $A P=P D$, so $\left[\begin{array}{ll}A \mathbf{v}_{\mathbf{1}} & A \mathbf{v}_{\mathbf{2}}\end{array}\right]=\left[\begin{array}{ll}\lambda_{1} \mathbf{v}_{\mathbf{1}} & \lambda_{2} \mathbf{v}_{\mathbf{2}}\end{array}\right]$ and we get $A \mathbf{v}_{\mathbf{1}}=$ $\lambda_{1} \mathbf{v}_{\mathbf{1}}$ and $A \mathbf{v}_{\mathbf{2}}=\lambda_{2} \mathbf{v}_{\mathbf{2}}$)
(d) \mathbf{F} (Consider $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. It is invertible, but not diagonalizable)
5.3.31. Consider $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. It is invertible, but not diagonalizable. To show it is not diagonalizable, first the eigenvectors of A. If A were diagonalizable, then the eigenspace of A would be 2 -dimensional, but here it is only 1 -dimensional!
5.3.32. Consider $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. It is diagonalizable (in fact a diagonal matrix), but not invertible

SECTION 5.4: EigEnvectors and Linear transformations

5.4.19. To show that B is invertible, just calculate $\operatorname{det}(B)$ (we know $\operatorname{det}(A) \neq 0$ since A is invertible). The matrix Q in question is just P ! To show this, just calculate $B^{-1}=$ $\left(P^{-1} A P\right)^{-1}$!
5.4.20. Since A is similar to $B, A=P B P^{-1}$, but then $A^{2}=P B P-1 \not P B P^{-1}=$ $P B^{2} P^{-1}$, so A^{2} is similar to B^{2}
5.4.21. By assumption, we know $B=P A P^{-1}$ and $C=Q A Q^{-1}$. But then $A=$ $Q^{-1} C Q$, so $B=P A P^{-1}=P\left(Q^{-1} C Q\right) P^{-1}=\left(P Q^{-1}\right) C\left(P Q^{-1}\right)^{-1}=\widetilde{P} C \widetilde{P}^{-1}$, where $\widetilde{P}=P Q^{-1}$.
5.4.26. Since A is diagonalizable, $A=P D P^{-1}$. Then use the fact that if B is invertible, then $\operatorname{Tr}(A B)=\operatorname{Tr}(A)$ and $\operatorname{Tr}(B A)=A$. That gives $\operatorname{Tr}(A)=\operatorname{Tr}\left(P D P^{-1}\right)=$ $\operatorname{Tr}\left(D P^{-1}\right)=\operatorname{Tr}(D)$. But $\operatorname{Tr}(D)$ is just the sum of the diagonal entries of D, i.e. the sum of the eigenvalues of D.

Section 5.5: Complex eigenvalues

5.5.1, 5.5.5. Use the same technique you usually use to find eigenvalues and eigenvectors, i.e. find $\operatorname{det}(\lambda I-A)$ and for every eigenvalue λ you found, find a basis for $N u l(\lambda I-A)$. Here you only have to do half of the work, because if \mathbf{v} is a (complex) eigenvector corresponding to λ, then $\overline{\mathbf{v}}$ is an eigenvector corresponding to $\bar{\lambda}$.

For example, if one eigenvalue is $\lambda=1+3 i$, and $\mathbf{v}=\left[\begin{array}{l}2+4 i \\ 3+6 i\end{array}\right]$, then another eigenvalue is $\bar{\lambda}=1-3 i$ and another eigenvector is $\overline{\mathbf{v}}=\left[\begin{array}{l}2-4 i \\ 3-6 i\end{array}\right]$

[^0]: Date: Thursday, July 19th, 2012.

